
R
I

R

a

b

c

a

A
R
A

K
�
C
E
G
I
V

1

t
s
i
a
a
r
o
e
�
(
i
a
m
E
s
t

B

M

0
d

Journal of Steroid Biochemistry & Molecular Biology 114 (2009) 2–7

Contents lists available at ScienceDirect

Journal of Steroid Biochemistry and Molecular Biology

journa l homepage: www.e lsev ier .com/ locate / j sbmb

ole of estrogen receptor � in membrane-initiated signaling in neural cells:
nteraction with IGF-1 receptor�

aquel Marina, Mario Díazb, Rafael Alonsoa, Amaya Sanzc, María Angeles Arévaloc, Luis M. Garcia-Segurac,∗

Laboratory of Cellular Neurobiology, Department of Physiology & Institute of Biomedical Technologies, University of La Laguna, School of Medicine, Santa Cruz de Tenerife, Spain
Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology & Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
Instituto Cajal, CSIC, E-28002 Madrid, Spain

r t i c l e i n f o

rticle history:
eceived 28 November 2008
ccepted 31 December 2008

a b s t r a c t

The mechanisms of action of estradiol in the nervous system involve nuclear-initiated steroid signaling
and membrane-initiated steroid signaling. Estrogen receptors (ERs) are involved in both mechanisms.
ER� interacts with the signaling of IGF-1 receptor in neural cells: ER� transcriptional activity is regulated
eywords:
-Catenin
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stradiol
lycogen synthase kinase 3

nsulin-like growth factor-1

by IGF-1 receptor signaling and estradiol regulates IGF-1 receptor signaling. The interaction between
ER� and the IGF-1 receptor in the brain may occur at the plasma membrane of neurons and glial cells.
Caveolin-1 may provide the scaffolding for the interaction of different membrane-associated molecules,
including voltage-dependent anion channel, ER� and IGF-I receptor.

© 2009 Elsevier Ltd. All rights reserved.
oltage-dependent anion channel

. Introduction

The ovarian hormone estradiol, a key regulator of reproduc-
ive physiology, acts in different regions of the central nervous
ystem to control neuroendocrine secretions, reproductive behav-
ors and non-reproductive events, modulating synaptic function
nd synaptic plasticity and affecting mood and cognition [1–3]. In
ddition, estradiol is a neuroprotective factor that promotes neu-
onal survival and tissue integrity in different experimental models
f neurodegeneration [1,4,5]. As in other tissues, the actions of
stradiol in the nervous system involve estrogen receptors (ERs)

and � [6,7] and two different but interrelated mechanisms:
i) the transcriptional regulation of target genes, by nuclear-
nitiated steroid signaling, and (ii) rapid membrane and cytoplasmic
ctions, by membrane-initiated steroid signaling, which in turn

ay also finally result in the regulation of transcription [8–10].

Rs mediate nuclear-initiated estradiol signaling, acting as tran-
cription factors that are activated after ligand binding to regulate
he transcriptional activity of target genes. In addition, ERs are
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also involved in membrane-initiated steroid signaling [10,11] and
numerous actions of estradiol in the nervous system involve cross-
talk between ERs and the membrane/cytoplasmic signaling of
growth factor/neurotrophin receptors [12,13].

Estradiol may directly interact with growth factors at different
levels of the intracellular signaling pathways in neurons and glial
cells, including the regulation of G proteins [14–18], the modulation
of intracellular calcium levels [19–27], the activation of calcium-
calmodulin-dependent protein kinase II [28], the activation of
the src tyrosine kinase [18,29,30], the activation of extracellu-
lar signal-related protein kinase (ERK)/mitogen-activated protein
kinase (MAPK) cascade [12,18,21,29,31–37], the activation of the
phosphatidylinositol 3-kinase (PI3K) pathway [32,33,37–41], the
activation of c-jun-kinase [42,43] and/or the phosphorylation of the
cAMP response element binding protein (CREB) [44–50]. The colo-
calization of ERs with growth factor receptors in the same neural
cells provides a cellular substrate for cross-coupling between these
signaling pathways. For instance ERs colocalize with p75, the low-
affinity NGF receptors, in cholinergic neurons of the basal forebrain
[51]. In addition, there is a widespread colocalization of estrogen
and neurotrophin receptors within estrogen and neurotrophin tar-

gets, including neurons of the cerebral cortex, sensory ganglia and
PC12 cells [12,52–55]. Immunohistochemical analyses have also
shown an abundant colocalization of ERs and insulin-like growth
factor-1 (IGF-1) receptor in different neuronal and glial populations
in the rat central nervous system [56–58].

http://www.sciencedirect.com/science/journal/09600760
http://www.elsevier.com/locate/jsbmb
mailto:lmgs@cajal.csic.es
dx.doi.org/10.1016/j.jsbmb.2008.12.014


emistr

2
r

n
g
n
g
E
b
p
t
a
t
p
i
m
v
t
fi
u
E
t
n
s
c
i
I
b
d
E
t
d
a
a
a
a
u
a
i
d
t
B
1
u
l
i
o

t
o
t
i
e
I
d
a
r
h
r
a

E
o
1
r

R. Marin et al. / Journal of Steroid Bioch

. Interactions between estrogen receptor � and IGF-1
eceptor in the brain

The interaction of ERs and growth factor receptors in the same
eural cells not only allows the regulation of membrane-initiated
rowth factor signaling by estradiol but also the regulation of
uclear-initiated ER signaling by growth factors. There are now
ood evidences indicating that in addition to classical activation of
Rs by estradiol binding, ER mediated transcriptional activity can
e regulated by ligand-independent mechanisms. Estrogen inde-
endent ER activation in the brain is suggested by studies on a
ransgenic strain of mouse with a luciferase transgene driven by
promoter containing estrogen response elements. ER-dependent

ransgene expression is observed in the brain of these animals when
lasma estrogen levels are low and when brain aromatase is inhib-

ted, suggesting that ERs can be activated by estrogen-independent
echanisms [59]. Intracellular kinase signaling pathways, acti-

ated by extracellular growth factors, regulate the ability of ERs
o promote changes in gene expression. Epidermal growth factor,
broblast growth factor and IGF-1 are among the extracellular reg-
lators of these kinase pathways that have been shown to promote
R receptor dependent transcription. Regulation of ER� transcrip-
ional activity by growth factors has been extensively studied in
on-neuronal tissues and cell lines [60,61]. These studies have
hown that, by phosphorylating ER� and some transcriptional
ofactors, the intracellular kinases regulated by growth factors pos-
tively regulate ER mediated gene expression [60,62]. The role of
GF-1 receptor as regulator of ER� transcriptional activity has also
een characterized in neuronal cells. Maggi and co-workers have
etermined that insulin/IGF-1 signaling can activate the unliganded
R� in neuronal cells via the ras/MAPK pathway [63,64] and that
his activation involved the N-terminal activation function 1 (AF-1)
omain of the receptor [65]. More recent studies have shown that
lthough IGF-1 promotes ligand-independent ER transcriptional
ctivity, it has a different effect in the presence of estradiol. In the
bsence of the hormone, IGF-1 increases ER� activity in N2a cells,
s in other neuroblastoma cells. In contrast, IGF-1 negatively reg-
lates, through activation of the PI3K pathway, estradiol-induced
ctivation of ER� transcriptional activity in this cell type [66]. The
nhibition of ER� transcriptional activity by IGF-1 in N2a cells
epends on its ability to regulate the activities of glycogen syn-
hase kinase 3� (GSK3�) and �-catenin through the PI3K pathway.
y opposite, MAPK blockade has no effect in the regulation by IGF-
of estradiol-induced transcriptional activity of ER� [66]. Thus, by
sing different components of its signaling system, IGF-1 may regu-

ate ligand-independent and dependent ER transcriptional activity
n neuronal cells and by this mechanism regulates hormonal actions
f estradiol via ER�.

The functional significance of the regulation of ER� transcrip-
ional activity by IGF-1 is suggested by the fact that the blockade
f ER activity prevents effects of IGF-1 on the survival and differen-
iation of developing neurons [67–69] and on adult neurogenesis
n the dentate gyrus [70]. ER inhibition also blocks neuroprotective
ffects of IGF-1 in the rat hippocampus [71]. On the other hand,
GF-1 receptor activation is essential for several actions of estra-
iol in the brain, including the hormonal regulation of the survival
nd differentiation of developing neurons [57,68,71], the estrogenic
egulation of synaptic plasticity in the hypothalamus [72–74], the
ypothalamic control of gonadotropins, estrous cyclicity and sexual
eceptivity [75–77] and neuroprotective effects in the hippocampus
nd substantia nigra [57,78].
Immunoprecipitation studies, showing the interaction between
R� and the IGF-1 receptor in the brain, have provided some clues
n the possible mechanisms involved in the cross-talk between IGF-
and estradiol. Estradiol administration to adult ovariectomized

ats results in a transient increase in the association between IGF-1
y & Molecular Biology 114 (2009) 2–7 3

receptor and ER� in the brain [79]. The interaction is coincident
in time with the increase in tyrosine phosphorylation of IGF-1
receptor, suggesting a possible causal relationship. Estradiol also
increases the interaction between p85 and IRS-1, one of the first
events in the signal transduction of the IGF-1 receptor. In addition,
the interaction between estrogen and IGF-1 systems seems to be
reciprocal, since the intracerebroventricular administration of IGF-
1 also increases the levels of association between ER� and IGF-1
receptor [79].

The administration of estradiol to ovariectomized rats also
results in the association of ER� with components of the PI3K/Akt
signaling pathway in the brain and in the regulation of the activ-
ity of Akt and its downstream kinase GSK3� [80,81]. In addition,
immunoprecipitation studies suggest that in the hippocampus
GSK3� forms a macromolecular complex with Tau, �-catenin and
the p85 subunit of the PI3K and another complex with ER� and �-
catenin. Estradiol increases the amount of phosphorylated GSK3�
associated to the first complex and reduces the amount of �-catenin
associated to the second complex [80–83]. The regulation of these
interactions of GSK3� with other molecular components may be
involved in the neuroplastic and neuroprotective effects of estradiol
[82–85].

3. Membrane localization of estrogen receptor � in neural
cells

An important question is the subcellular localization in which
the interactions of ER� with IGF-1 receptor and the components of
the IGF-1 receptor-associated signaling complex occur. Although
IGF-1 receptor immunoreactivity has been detected in neuronal
and glial cell nuclei [86] there is little evidence that other com-
ponents of the IGF-1 receptor signaling system may reach a nuclear
localization. In contrast, several studies have demonstrated local-
ization of ER�, or ERs subtypes structurally close to classical ER�,
in the cytoplasm and plasma membrane of neurons and glial cells
[87–89]. Experimental evidence accumulated over the years in dif-
ferent cell types strongly supports the idea that the membrane and
nuclear ER� share a common transcriptional origin [90,91]. In par-
ticular in neurons, membrane ER� has been shown to have the same
expected molecular weight than its nuclear counterpart (67 kDa),
although other forms migrating at higher molecular weight seem
to be also recognized by specific antibodies against canonical ER�
(reviewed in [92,93]). In murine septal SN56 and hippocampal
HT22 immortalized neurons, as well as in the cortex, septum and
hippocampus of mouse and human, an ER�-like protein with an
apparent molecular weight of 80 kDa has been identified [94,95].
Our studies revealed that this 80 kDa protein was not the result
of ER� glycosylation that may confer a higher molecular weight
[95], although we cannot discard that it may be the target of small
ubiquitin-like modifier (SUMO) as previously described in COS-
1 cells [96]. Other data from different laboratories have revealed
the presence of extranuclear, still not characterized, ERs with high
molecular weight (80–112 kDa) in human and murine neurons [92]
which may be obtained by different susceptibility to proteolysis.
Alternatively, these ERs may be the product of different splicing of
ER genes, as evidenced in non-neuronal systems, where an 80 kDa
ER was identified as the result of duplication of exons 6 and 7
in ER� gene [97]. Aside from classical ER�, a novel membrane
ER, the G-protein-coupled transmembrane receptor (GPR30), has
been found to be expressed in different brain areas [98,99], asso-
ciated with a modulation of hypothalamic and nociceptive activity

[100–102]. Furthermore, a membrane ER-like (ERX) which shares
some homologies with G-protein coupled receptors has been found
in hippocampus and neocortex, related to estrogen neuroprotective
functions [88,92], and more recently, in myelin and oligodendro-
cytes [103].
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Even though it is generally accepted that ER present at the
lasma membrane shares high homology with classical ER�, a
rotein lacking transmembrane domains, the mechanisms acting
t the neuronal plasma membrane in order to allow its integra-
ion into a highly hydrophobic environment remain unclear. Some
ecent studies in non-neuronal models have demonstrated that
almitoylation of ER� is crucial for plasma membrane location and
unction of the receptor [104,105]. Palmitoylation can influence
argeting and recruitment of the modified proteins to membrane

icrodomains, caveolae and lipid rafts, and may enable the palmi-
oylated proteins to efficient signaling transduction [106,107]. Thus,
ne of the plausible explanations for the presence of ER� at the
lasma membrane of neurons is that it may be part of caveolar
icrostructures, specialized microdomains which have a particu-

ar lipid composition and a high density of lipid-anchored proteins
108]. Interestingly, caveolae are known to assemble specific pools
f proteins that participate in signaling events, facilitating the inter-
ction of receptors and signaling proteins [109]. Best described
n non-neuronal systems, caveolins (1–3) are structural proteins
ssential for the formation of caveolae [110]. Related to breast can-
er cells, caveolins are known to play a pivotal role in the trafficking
f ERs to the plasma membrane, acting as anchoring factors to
rovide additional stability for the integration and functionality
f the receptor [111,112]. Furthermore, an essential step for either
R� and ER� localization to caveolae or the induction of estrogen
ffects in cancer proliferation is the palmitoylation of the recep-
or at cysteine 447 (for human), which is required to caveolin-1
inding of the receptor [105,113,114]. However, the physiological
elevance of caveolin proteins in the mechanisms of membrane
Rs signaling in the nervous system is not well known. Different
eports have demonstrated the expression of all three caveolin iso-
orms in neurons and, in particular, caveolins 1 and 3. These proteins
eem to be responsible of functional segregation of different intra-
ellular pathways related to modulation of estrogen responses in
eurons (reviewed in [115]). In this regard, it is of interest that
aveolins regulate a variety of key signaling elements involved in
ifferent mechanisms of estrogen action relevant for brain func-
ion, including IGF-1 receptor, nerve growth factor receptors, Src
yrosine kinases, some components of PI3K and MAPK pathways,
nd metabotropic glutamate receptor (mGluR) signaling [116–119].
n addition, caveolae and caveolins appear to be implicated in

odulation of amyloid precursor protein (APP) [120,121] and the
roduction of �-amyloid peptide [122], suggesting an involvement
f these proteins in the control of �-amyloid pathology [123]. Fur-
hermore, CavKO mice deficient in caveolin-1 expression appeared
o show a central cholinergic dysfunction and altered spatial mem-
ry [124]. Altogether, these data make conceivable that membrane
Rs activities may be related to caveolae through the association
ith these anchoring proteins, thus allowing the interaction of the

eceptors with other modulators that may participate in alterna-
ive estrogen mechanisms to regulate neural function and promote
europrotection. In line with this, ERX was found to be located

n caveolar fractions of murine neocortex where it was shown to
e upregulated after ischemic injury [98], and ER� localized in
aveolae-enriched membranes has been shown to mediate calcium
ntracellular mobilization in a hypothalamic cell line [125]. How-
ver, very little is known about the potential molecules that may
nteract with the receptor in this domain to control physiological
hanges in neurons. As mentioned before, one of the best stud-
ed candidates for these interactions is IGF-1 receptor. Although
till little explored in neurons, it is noteworthy that IGF-1 recep-

or also appears to localize to caveolin-rich subcellular fractions of
heochromocytoma PC12 cells [126], and in SN56 and HT22 cells
unpublished results), thus suggesting that caveolae may have a
ivotal role in ER-IGF-1 receptor interactions to coordinate their

nterdependent mechanisms in the nervous system. Furthermore,
y & Molecular Biology 114 (2009) 2–7

in caveolar fractions of SN56 and HT22 neurons, we have previously
demonstrated the accumulation of a membrane ER� known to be
crucial for neuronal preservation against �-amyloid-induced toxic-
ity [36,127]. These evidences have been reproduced in microsomal
fractions of murine cortical, septal and hippocampal areas [128] as
well as in the caveolar extracts from human cortex (manuscript in
preparation). In an attempt to find putative targets of membrane
ER� able to modulate the neuroprotective effects, we identified a
voltage-dependent anion channel (VDAC) that was found to asso-
ciate with the receptor in caveolar fractions of human and mouse
brain areas. In support of these results, other evidences had demon-
strated a direct modulation of the channel by estrogens and other
ER modulators [129]. Whereas VDAC has been traditionally charac-
terized as a porin localized at mitochondrial membranes, where it
participates in the transport of different metabolites [130] and in
the modulation of apoptosis [131], some few data also found VDAC
at the plasma membrane of some different cell types [132,133].
Though the functional relevance of this channel at the plasma mem-
brane is unclear, some evidences have suggested a role for plasma
membrane VDAC in neuronal apoptosis induced by toxic stimuli
[134]. In agreement with these observations, we provided the first
evidence that VDAC can modulate the toxic effect provoked by
�-amyloid exposure [127]. Together with VDAC, caveolin-1 also
appeared to take part in this molecular complex in which ER�
is incorporated [127,128], probably supplying additional stability
of the molecular associations in these membrane microstructures.
Since the mechanisms to explain neuronal caveolar integration of
VDAC and ER� are still unexplored, a plausible possibility may
be through their binding to caveolar scaffolding domain (CSD) of
caveolin-1, known to be the binding site of different signaling pro-
teins [117,135]. Using bioinformatics tools [136,137], a consensus
motif �X�XXXXHy (�, aromatic amino acid; Hy, bulky hydrophobic
aminoacid) conserved in murine and human molecules and sus-
ceptible of binding to CSD was identified in the ER ligand binding
domain as well as in the second N-terminal intracellular loop of
VDAC [128]. This paradigm is compatible with the required linkage
of palmitate to ER Cys447 residue essential for the receptor asso-
ciation with caveolin-1 demonstrated in non-neuronal cells [113].
Apart from VDAC, other candidates may be part of the complex
with ER� at the plasma membrane and may participate in dif-
ferent mechanisms of estrogen actions in neurons. Among them,
IGF-1 receptor not only physically interacts with ER� as previ-
ously mentioned, but it also induces caveolin-1 phosphorylation
and translocation to the plasma membrane [138]. Moreover, pre-
liminary data has also shown a co-precipitation of VDAC with IGF-1
receptor in lipid rafts and microsomal fractions of human cortex and
hippocampus (unpublished results), that may be an indicative of
the association of these two proteins. Overall, these findings bring
new data about the mechanisms developed by neural cells to inte-
grate and maintain the stability of ERs at the plasma membrane
to modulate membrane-initiated effects of estradiol in the nervous
system.

4. Concluding remarks

From the information reviewed in this paper we may propose
that the plasma membrane is a plausible site for the interaction
of ER� and IGF-1 receptor in neural cells. The interaction may
occur in specialized membrane domains in which caveolin-1 may
provide the scaffolding for the interaction of different membrane-
associated molecules, including VDAC, ER� and IGF-I receptor. In

addition, the macromolecular complex formed by ER� and IGF-1
receptor is associated to components of IGF-1 receptor signaling,
including IRS-1, p85, Akt, GSK3� and �-catenin (Fig. 1). This macro-
molecular complex may be differentially activated by estradiol and
IGF-1 and may then operate as a coincidence signal detector to
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Fig. 1. Proposed model for the interaction of ER� and IGF-1 receptor in neural cells.
ER� and IGF-1 receptor may interact in the plasma membrane, where caveolin-1
may provide the scaffolding for the interaction of different membrane-associated
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olecules, including VDAC. The macromolecular complex formed by ER� and IGF-1
eceptor is associated to components of IGF-1 receptor signaling, including IRS-1,
85, Akt, GSK3� and �-catenin. Some components of this complex, such as ER� and
-catenin are also targeted to the nucleus, where they regulate gene transcription.

dapt the intracellular homeostatic responses of nerve cells to the
hanging extracellular levels of estradiol and IGF-1.
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